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A computer-simulation model is used to study the percolation phase transition of stiff

chains/ sticks on a sqjuare lattice. By varying the chain length. effects of the chain length ( L)
on the percolation transition is explored. The percolation exponents seem to remain
unchanged with L. [he percolation threshold p, depends strongly on the chain-leneth. and
shows a power-law dependence p1,( L

1. Introduction

Because of its diverse applicabilities particularly in fluid flow through porous
media (i.e. marine sediments), percolation phenomena have been the subject
of active research for a long time 11. 21. Site and bond percolations are mostly
studied, and have been quite successful in understanding the physical and
chemical properties of inhomogeneous materials (alloys in particular). In most
of the polymeric materials i.e. the gel networks, the basic units/segments that
form the incipient infinite network, are chains and loops of various sizes [3]. In
order to understand the strength of connectivity at the onset of the infinite
network, it would be interesting to study a model of percolating networks with
chains and loops of various sizes as basic units. Site and bond percolation
mechanisms may not be adequate to describe the conformational properties of
such random networks. On the other hand, it is rather difficult to consider both
loops and chains of various sizes and distributions, because of limitations on
computer memory and time. Therefore. it might be useful to investigate the
percolation of chains.

Drory et i,. [41 have recently studied the percolation threshold of permeable
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objects of various shapes in continuum space. They found that the percolation
threshold depends strongly on tile size and shapes (i.e. aspect ratio for
elongated boxes. radius for spheres, etc). Here we have inmestigated tile
percolation of stiff-chains (sticks or thin rods) of various siZCS in a two-
dimensional discrete lattice: we also find a strong dependence of the percola-
tion threshold on tile chain length. Such studies may he helpful in short fibres
epoxy resin composites 15].A related study on lamming coveraue has been
recently carried out by Svrakic and Henkel [6•6 for an irreversible deposition of
mixtures of Iine-segments on a square lattice. We have also ohscrved the
jamming coveraCe to decrease with the chain-length. however, we concentrate
here primarily on percolation quantities for monodispersc chains. In the
following section we describe the model. In section three the results of the
simulation are presented with a :summarv and discussion in section tour.

2. Model

We consider a square lattice, and sticks (i.e. stiff-chains) as the percolating
units. In classical percolation theory one studies the statistics of a single
percolating site. We wish to study the statistics of percolating chains where a
chain is defined as multiple percolating sites connected in a linear fashion. Thus
the length of a chain L is the number of linearly connected sites on the lattice:
L Il corresponds to standard site percolation. For a fixed chain-length L.. we
generate clusters of connected chains in the following way. The decision to
place a chain is determined with a probability p with thie help of pseudo-
random numbers. If the iandom number is less than or equal to p. then wve
randomly select one of the four directional orientations. File chain is then
placed along the chosen direction if no occupied lattice site is in the way as two
chains are not allowed to share a lattice site. If the randomly selected
orientational direction fails, then we choose another empty site randomly. and
a random orientational direction. Therefore, a chain is not placed if it \\ere to
intersect with a previously occupied lattice site. This process of selecting an
,.,,npty site with probability p. and one of the orientational directions randomly.
and attempt to place the chain is repeated again and again. for a fixed
concentration of occupied sites. The consequence ot this rule i. that a jamming
concentration limit p, is reached when it is not possible to place additional
chains in the lattice. The jamming coverage is less than one for L. larger than
one. We concentrate here mainly on the percolation quantities. and focus on
the cluster size, their number, percolation probability and the second moment
of the cluster size distribution. In this study. a cluster is defined by joining the
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nearest-neighbor occupied sites. thus two neighboring sticks will be part of tile
same cluster if they are separated by one lattice constant.

3. Results

Simulations are carried out on CONVEX CIXP2 machine withl 32 MB of
memory. This computer contains a vector processor. vet wve were unable to
make maximum use duc to the lack of vector code in the algorithm. For each
probability 1). t'Xo hundred independent runs are used on a 1 )100 , Ix 10) lattice
with various size chains. A typical computation requires two hours of process-
ing time for each set of realizations. Twenty-eight different values of v were
used for seven different chain-lengths. About 400 hours of computer time was
used in this project.

As we mentioned above, we have analysed percolation probability /P

cluster number. and the second moment S =s-) of the cluster size dis-
tribution. The percolation threshold was determined by finding the peak in the
second moment. The result of the percolation threshold versus chain-length is
shown in fig. 1. We see that the percolation threshold decreases on increasing
the chain-length. When shown on a log-log plot this decay exhibits a exponent
power-law dependence i.e. p1.(L,) - L, '. This exponent x was found using a
least-squares technique to be about one half.

The exponent beta is determined by examining the percolation probability
data with P, ( p - p,)'". Fig. 2 shows this percolation probability i.e. prob-
ability that a site is a member of the infinite cluster versus the probability that a
site is occupied for various chain-lengths. Again, it can be seen that the
percolation threshold decreases with increasing chain-length. It should also be
noted that the percolation probability saturates at a value of p less than one.
The saturation value of P, is the jamming coverage j16. and it decreases with
increasing chain-length as expected.

From the least-square fit of the log-log plot of P, versus ( p -) we
estimate [3. We have evaluated 3 for various chain-lengths and the results are
presented in table 1. Within the range of the deviations, these values for /3
seem to remain the same for different chain-lengths, and is consistent with the
accepted values for site and bond percolation [1].

Variation of the second moment S (i.e. the susceptibility) with concentration
p is shown in fig. 3 for various chain-lengths. TI-e concentration where S
reaches its maximum value is the percolation threshold. Again, it is clear from
the data that the percolation threshold decreases with increasing chain-length.
A log-log plot of S versus (p - P) gives the exponent y, S - (p - p,)". The
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Fig. 1. Percolation threshold p, versus chain-length (a) linear scale, and (hN log-lou scale.

values of y for various chain-lengths are presented in table I which appears to
show no change with chain length (+ and - denote the estimates at p above
and below p•, respectively).

Using the sca!ir,, relations [11, other exponents like the correlation length
exponent v can oe estimated. The fractal dimensionality D may also be
evaluated from D = d - P/v. The computed values for v and D for various
chain-lengths are collected in table 1 for various chain-lengths.
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Table I

1-, /3 y(- ) y(-) p /)

I.593 ().139 2.12 2.07 1.2- 1.0
2 ().448 (. 137 1[.3 1.25 1'13

.. 166 (.140 _.27 I.(03 1. _
4 (1.321 ().13L) 2.37 1.45 1.32 i'll

0)293 0.143 2.34 1.00 1.31 Ii)1
0 )1.235 (). 13. 2.4( 2.(0)) 1.34 lI'1)

21 ().132 4).13, 2.41 1.4o I.34 p )l1

4. Summary

We have presented a cornputer-simulation study of the percolation ot stiff
chains/sticks in a two-dimensional lattice. The percolation exponents ,cenm to
remain unchanged. The percolation threshold. on the other hand. depends
strongly on the chain-length L, with a power-law 1) -• L, The jamming
coveraz,,e decreases vith the chain-Ien.zth. We plan to study the plercolation of
random chains in the near future.
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